Grade 11/12 Math Circles

October 4, 2023

Digital Signal Processing - Solutions

Exercise 1

Consider the continuous-time signal defined by $x(t)=t, 0 \leq t \leq 12$.

Compute and sketch the discrete-time (digital) signal $x[n]$ with sampling intervals:
a) $T=1$, and
b) $T=2$.

Exercise 1 Solution

a) $x[n]=x(n)$.

b) $x[n]=x(2 n)$.

Exercise 2

Let $x[n]$ be the following signal.

Sketch the transformed signal $y[n]=x\left[\frac{-n}{2}-2\right]$ by shifting, flipping, and then scaling the original signal. It may be helpful to sketch each intermediate step.

Exercise 2 Solution

Exercise 3

Write the delta function, $\delta[n]$, in terms of a sum (or difference) of shifted unit step functions.

Exercise 3 Solution

$\delta[n]=u[n]-u[n-1]$.

Exercise 4

Let $x[n]$ be the following signal.

Sketch the result of
a) applying the moving average filter to $x[n]$ with $N=3$, and
b) applying the median filter to $x[n]$ with $N=3$.

What differences do you notice?

Exercise 4 Solution

a) Moving average filter:

b) Median filter:

Exercise 5

An exponential moving average filter is defined by

$$
y[n]=\alpha x[n]+(1-\alpha) y[n-1]
$$

where $y[n]$ is the current output, $y[n-1]$ is the previous output, and $x[n]$ is the current input. The parameter α is a number between 0 and 1 .

Assuming that $x[n]=0$ when $n<0$,
a) Find an expression for the output $y[n]$ in terms of only the previous input values, i.e. the values $x[n-k]$.
b) Using your result from a), determine the impulse response of the exponential moving average filter.

Exercise 5 Solution

a) We can determine $y[n]$ by substituting the previous inputs into the definition, as follows:

$$
\begin{aligned}
y[n] & =\alpha x[n]+(1-\alpha) y[n-1] \\
& =\alpha x[n]+(1-\alpha)(\alpha x[n-1]+(1-\alpha) y[n-2]) \\
& =\alpha x[n]+(1-\alpha)(\alpha x[n-1]+(1-\alpha)((\alpha x[n-2]+(1-\alpha) y[n-3])) \\
& \cdots \\
& =\alpha \sum_{k=0}^{n}(1-\alpha)^{k} x[n-k] .
\end{aligned}
$$

b) The impulse response is the output of the filter when the input is a delta function. Using our result from a), we find that

$$
\begin{aligned}
h[n] & =\alpha \sum_{k=0}^{n}(1-\alpha)^{k} \delta[n-k] \\
& =\alpha(1-\alpha)^{n} .
\end{aligned}
$$

